Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 69(8): 1966-1986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835598

RESUMO

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.


Assuntos
Células Fotorreceptoras , Degeneração Retiniana , Animais , Células Ependimogliais/metabolismo , Camundongos , Neuroglia/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo
2.
Theranostics ; 10(18): 7956-7973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724452

RESUMO

Rationale: The Notch and transforming growth factor-ß (TGFß) signaling pathways are two intracellular mechanisms that control fibrosis in general but whether they play a major role in retinal fibrosis is less clear. Here we study how these two signaling pathways regulate Müller cell-dominated retinal fibrosis in vitro and in vivo. Methods: Human MIO-M1 Müller cells were treated with Notch ligands and TGFß1, either alone or in combination. Western blots were performed to study changes in γ-secretase proteases, Notch downstream effectors, endogenous TGFß1, phosphorylated Smad3 (p-Smad3) and extracellular matrix (ECM) proteins. We also studied the effects of RO4929097, a selective γ-secretase inhibitor, on expression of ECM proteins after ligand stimulation. Müller cell viability was studied by AlamarBlue and cytotoxicity by lactate cytotoxicity assays. Finally, we studied changes in Notch and TGFß signaling and tested the effect of intravitreal injections of the Notch pathway inhibitor RO4929097 on retinal fibrosis resulted from Sodium iodate (NaIO3)-induced retinal injury in mice. We also studied the safety of intravitreal injections of RO4929097 in normal mice. Results: Treatment of Müller cells with Notch ligands upregulated γ-secretase proteases and Notch downstream effectors, with increased expression of endogenous TGFß1, TGFß receptors and p-Smad3. TGFß1 upregulated the expression of proteins associated with both signaling pathways in a similar manner. Notch ligands and TGFß1 had additive effects on overexpression of ECM proteins in Müller cells which were inhibited by RO4929097. Notch and TGFß ligands stimulated Müller cell proliferation which was inhibited by RO4929097 without damaging the cells. NaIO3-induced retinal injury activated both Notch and TGFß signaling pathways in vivo. Intravitreal injection of RO4929097 prevented Müller cell gliosis and inhibited overexpression of ECM proteins in this murine model. We found no safety concerns for up to 17 days after an intravitreal injection of RO4929097. Conclusions: Inhibiting Notch signaling might be an effective way to prevent retinal fibrosis. This study is of clinical significance in developing a treatment for preventing fibrosis in proliferative vitreoretinopathy, proliferative diabetic retinopathy and wet age-related macular degeneration.


Assuntos
Benzazepinas/farmacologia , Células Ependimogliais/patologia , Gliose/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Benzazepinas/uso terapêutico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrose , Gliose/induzido quimicamente , Gliose/patologia , Humanos , Injeções Intravítreas , Iodatos/administração & dosagem , Iodatos/toxicidade , Masculino , Camundongos , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vitreorretinopatia Proliferativa/tratamento farmacológico , Vitreorretinopatia Proliferativa/patologia , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/patologia
3.
Invest Ophthalmol Vis Sci ; 59(15): 6075-6088, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592496

RESUMO

Purpose: Subretinal fibroneovascularization is one of the most common causes of vision loss in neovascular AMD (nAMD). Anti-VEGF therapy effectively inhibits vascular leak and neovascularization but has little effect on fibrosis. This study aimed to identify a combination therapy to concurrently inhibit subretinal neovascularization and prevent fibrosis. Methods: We generated transgenic mice in which induced disruption of Müller cells leads to subretinal neovascularization, which is reliably accompanied by subretinal fibrosis. We conducted Western blots and immunohistochemistry to study changes in transforming growth factor-ß (TGFß) signaling including endoglin, a coreceptor essential for TGFß signaling, and then tested the effects of monthly intravitreal injection of anti-VEGF-A and anti-endoglin, either alone or in combination, on the development of subretinal fibroneovascularization in our transgenic mice. Results: Müller cell disruption increased expression of TGFß1, TGFß type 1 receptor, and phosphorylated-Smad3. Endoglin was strongly expressed in subretinal fibroneovascular tissue. Fluorescein angiography and measurements of retinal vascular permeability indicated that intravitreal anti-VEGF-A in combination with anti-endoglin treatment more efficiently inhibited vascular leak compared with either monotherapy. Immunostaining of retinal wholemounts with antibodies against glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 indicated that the combination therapy also effectively prevented subretinal fibrosis and inhibited microglial activation. Luminex cytokine assays indicated that intravitreal anti-VEGF-A and anti-endoglin treatment, either alone or in combination, reduced the production of IL33 and macrophage inflammatory protein-3α. Conclusions: Our findings offer a potentially novel combination approach to concurrently managing subretinal neovascularization and fibrosis in nAMD.


Assuntos
Anticorpos Monoclonais/farmacologia , Endoglina/imunologia , Células Ependimogliais/patologia , Retina/patologia , Neovascularização Retiniana/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Combinação de Medicamentos , Células Ependimogliais/metabolismo , Fibrose/metabolismo , Fibrose/prevenção & controle , Angiofluoresceinografia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Injeções Intravítreas , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Retina/metabolismo , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Vasos Retinianos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...